AMERICAN UINVERSITY OF BEIRUT
 FACULTY OF ENGINEERING AND ARCHITECTURE
 EECE 460 Control Systems
 Spring 2005-2006. Quiz I
 Prof. Fouad Mrad

Name:

1.5 hours. March 16, 2006

Total of 100 points. Open Book Exam, 2 pages
YOU MUST RETURN THIS EXAM WITH YOUR ANSWER BOOKLET

Question I (50 points):
A unity feedback control system compensated by a series P controller with positive gain K has the following root locus:

+10 a) Based on the graph, approximate the open loop transfer $\left[\frac{k}{s(s+1)(s+2)}\right]$
$+10 \mathrm{~b})$ Characterize the stability of the closed loop transfer function [conditionally stable]
$+10 \mathrm{c})$ Find the P controller gain K that makes the closed loop system dominated by a critically damped second order system. [$k=0.38$]
$+10 \mathrm{~d})$ Find the range of the P controller gain that makes the system dominated by an overdamped $2^{\text {nd }}$ order behavior. [$0<k<0.38$]

A substitute series PD controller is proposed for the same system $\mathrm{K}(\mathrm{s}+3)$, the following new root locus was obtained

+5 e) Based on the plot, supply the range of the gain K that makes this controlled process stable. [k>0 always]
+5 f) Based on plot approximate the value of the double location of the closed loop transfer function. [≈-0.45]

Question II (50 points):

A unity feedback system of a DC motor whose transfer function is

$$
G(s)=\frac{K}{s(s+6)}
$$

+10 a) Approximate the root locus of the system
+10 b) Derive a valid state model of the open loop system
+10 c) Supply the closed loop transfer function
+10 d) Supply the natural frequency and damping ratio of the closed loop transfer function when $K=672$
+10 e) Based on part d, approximate 2% settle time and maximum overshoot in the system response to a step input.
b) $A=\left[\begin{array}{cc}0 & 1 \\ 0 & -6\end{array}\right], B=\left[\begin{array}{l}0 \\ k\end{array}\right], C=\left[\begin{array}{ll}1 & 0\end{array}\right]$, not unique
c) $\frac{k}{s^{2}+6 s+k}$
d) $\omega_{n} \approx 26, \varsigma \approx 0.116$
e) $\mu_{p} \approx 69 \%, t_{s} \approx 1.33 \mathrm{sec}$

